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INTRODUCTION Quality control (QC) in biologics manufacturing is mandat-
ed and essential for ensuring the safety and efficacy of bio-
logical drugs. Comprehensive monitoring of critical quality 

attributes (CQAs) in biologics, including the analysis of impurities, post-translational modifications 
(PTMs), and sequence variations, has traditionally relied on methods such as  enzymatic and chem-
ical digestion followed by various gas-phase fragmentation techniques.
 
However, these conventional techniques face several challenges: the presence of contaminants 
like detergents, lipids, and stabilizers can compromise results; achieving comprehensive sequence 
coverage can be problematic, especially when peptides produced are too short or when fragmen-
tation fails to yield informative results; and unwanted modifications such as oxidations and deam-
idations are frequently introduced during sample preparation. As a result, multiple development 
iterations, including the use of specialized sample cleanup procedures and multiple enzymes, are 
frequently necessary.
 
To address these issues, we introduce two new tools. The first, our Multiple Attribute Method  (MAM) 
kit, is specifically engineered to handle contaminants at every stage of biologics manufacturing 
from cell culture to final formulation, including in automated workflows. It effectively removes sur-
factants, stabilizers, polymers, buffers, salts, etc. and is compatible with multiple proteases; the 
MAM kit is specifically engineered to significantly reduce the artificial introduction of chemical 
artifacts. The second tool, the Shredder, offers a novel approach to bottom-up proteomics sam-
ple preparation. It randomly cleaves peptides along the backbone, producing nested sets of pep-
tides that overcome traditional fragmentation challenges and provide enhanced certainty about 
sequences, including the precise locations of PTMs.

Fig. 1

Fig. 2

The MAM kit, based on a purpose-engineered version of the S-Trap™ Turbo, handles diverse contaminants including
surfactant-rich samples.

The Shredder applies a pseudo-enzymatic exceedingly low-specificity cleavage at all points along a peptide backbone to 
generate a series of highly overlapping peptides for complete sequence coverage.
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LC-MS Results The LC-MS runs of multiple MAM analyses showed retention 
time shifts equivalent to technical replicates and good peak 
alignment across replicates (Fig. 3); LC-MS profiles indicate an 

efficient protein digestion and a successful clean-up. Adjacent blank prepared samples do not show 
any trace of peptides or contamination, confirming the absence of cross-contamination between 
samples. Selected doubly-charged tryptic peptides from the NIST mAb RM 8671 were evaluated 
for reproducibility (Fig. 3, table). The variation of the double-charged ions XIC areas were calculat-
ed and expressed as % CV.  All of the peptides showed an overall CV of ≤ 20%.

Sample with 1% tween-20,
post cleanup, 1 µL injection,
2% of total sample

1% tween-20, 1:10,000
dilution, 1 µL injection,
1% of total sample

Contaminant Removal: Example 
of detergent removal. 100 µL of 1% 
tween-20 containing 100 µg mAb 
was processed by S-Trap™. 2% of 
the sample was then injected (Fig. 
4, upper panel). The lower panel is 
a 1 µL injection of a 1:10,000 dilu-
tion of 1% tween-20 representing 
a 20,000 fold dilution compared 
to the upper panel. Assuming a lin-
ear response with increasing con-
centration the equivalent deter-
gent signal would be in the range 
of 4E12.

Fig. 3

Fig. 4

Total Ion Current (TIC) overlay for 34 NIST samples.

S-Trap™ sample processing removes detergents, PEG and other contaminants.

Biosimilar Characterization: Data acquired from NIST mAb prepared with the MAM kit was ac-
quired on an Agilent 6546, ZenoTOF, TimsTof Pro and Thermo QE, and analyzed using Protein Met-
rics Byologic; additional searches on TimsTOF Pro data were performed using Spectronaut. Excel-

lent sequence coverage between 99% - 100%, as well 
as the expected glycosylations, disulfide bonds, oxi-
dizations and deamidations were observed (Figures 
5 and 6). Digestions were reproducible and over 100 
Host Cell Proteins (HCPs) were identified from the mu-
rine cell line used to generate the mAb RM8671 (Tim-
sTof analysis).

Fig. 5
Fig. 6

Glycopeptide identification (Agilent 6546)
Sequence coverage (Agilent 6546)

Shredder: Single Shot LC-MS Run: The Shredder afforded a 99.7% sequence coverage for Bovine 
Serum Albumin (BSA, Fig. 7); as expected, signal- and propeptide which were, as expected, not 
detectable. The average read depth (“depth of sequencing”) was 62X per amino acid, a concept 
widespread in genomics but one not yet broadly applied in proteomics. 3436 PSMs were observed 
containing 2179 unique peptides. Peptide lengths from 7 to 49 amino acids were observed with an 
average of 16.3 and median of 15. Especially for such a wide range of peptide sizes, the observation 
of specific peptides is a function of chromatography, mass spec analytical limitations and software 
search setting; in this case, 7 was the lower limit in the Mascot search settings. Importantly, the re-
sulting peptide with significant overlap holds knowledge of co-occurring PTMs, variants, etc.

Fig. 7

Fig. 8

Fig. 9

Shredder analysis with 100 µg of BSA. Peptide alignment displays an extensive laddering allowing for sequence coverage 
of >99% in a single shot LC-MS run. The read depth was 62X per amino acid on average.

Shredder: NISTmAb RM 8671: Results of Peaks AB 3.0 de 
novo analysis of Shredder peptides of the NIST mAb. The 
heavy chain reached 92% coverage. The light chain 98% 
coverage. No optimization of any kind was performed on ei-
ther the Shredder protocol or the Peaks workflow.

Reduction of artificial deamidation: use of the MAM kit 
drastically reduced deamidation of N/Q when processing 
NISTmAb antibody in comparison to a standard workflow. 
The optimized MAM digestion buffer effectively mitigates 
unspecific deamidation on both glutamine (Q) and aspar-
agine (N) residues, yielding greater accuracy in the final 
quantifications.
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