*ProtiFi technologies are patent and patent-pending.

SimpliFi™ in a Bo

Multiomics Data Analys
on Private Servers® -
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The rapid expansion of omics data poses a significant in-
sights. This challenge is compounded by the increasing
sample sizes and diversity of omics analyses within studies.

INTRODUCTION

To address this challenge, speed the path to understanding, and open the power of omics to non-
experts, we developed SimpliFi™ an interactive, intuitive data-to-meaning engine. Employing
non-parametric statistics derived solely from inherent data structure, SimpliFi™ handles data with-
out making incorrect assumptions. It uses resampling techniques to calculate confidence intervals
for all metrics, including p-values, highlighting often-overlooked uncertainties of omics data. Sim-
pliFi™ handles all kinds of omics data and seamlessly integrates data from various omics analyses.
Sharing, exploration, or publication is as simple as sending a simple URL, which can be public or
private. SimpliFi™is highly optimized and runs on GPUs to provide results in minutes despite using
computationally-intensive non-parametric approaches.

Ease of Use: Many data analysis tools take days or months to understand and use, and then they
can break. SimpliF"i is accessible even to non-omics experts: if you can use an iPhone, you can use
SimpliFi™!

QUALITY CONTROL & VISUALIZATION

Ensuring quality control is imperative in all analytical workflows. Particularly with extensive sample
cohorts, mitigating batch effects and ensuring reproducibility becomes paramount. SimpliFi's™ lat-
est features are desighed to efficiently visualize extensive datasets and dynamically alert users to
any anomalies (Fig. 1).
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Fig.1

RIGOROUS ANALYSIS

SimpliFi™ analyses often non-Gaussian biolog-
Ical measurements using nonparametric statis-
tics, allowing sample replicates to define their

own unique distributions, which can lead to errors in traditional statistical methods. Key to accuracy
IS 1ts ability to correctly adapt to variances that change with measurement intensity: at low inten-
sity, stochastic sampling expectedly gives high variation, while effects like saturation can occur at
high intensity. Importantly, SimpliFi™ always reports p-values and fold- changes with accompany-
Ing confidence intervals.

Effect of intensity of observation: In comparing sam-
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Fig. 2 Red Trace: The likelihood of observing a 16x difference between any two replicates within the same class at low-level
observations around 1000 counts is about the same as observing the expected 1x difference.

Impact of Replicate Consistency: As the number of biological replicates increases, consistent
changes between states boost p-value certainty. However, inconsistencies or fewer replicates re-
ducethis certainty. More agreeing replicates strengthen confidence, especially when changes align,
while discrepancies or fewer replicates weaken it.
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RIGOROUS ANALYSI Limitation of T-Tests: False positives and neg-
atives result from under sampling of variability
(Fig. 4A) or outliers (Fig. 4B). The effect of in-
tensity on certainty of measurement can be substantial (Fig. 4C): Q9NX61 and Q969X6 have near-
ly identical fold changes, however the former observed at low intensity (4k - 10k) is not significant
(p = 0.095), while the latter at the 20k - 50k intensity range is highly significant (p = 0.0006).
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Fig. 4 Note that SimpliFi™ p-values represent the chance that control was chosen at random from experimental (or the inverse).
This is not the same as the probability that two normally distributed populations have the same mean.

EFFORTLESS EXPLORATION: BUCKETS

Create custom lists of analytes you wish to explore further with the Buckets feature. Choose them
from the analyte lists or select all analytes within a box or freeform region of any diagram. Then en-
able the filter to perform analysis on just that set, or what that set has in common (or not) with other
buckets. Below is the intersection of orange and purple buckets (Fig. 5).
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I N T E RACT I v E P LOTTI N G Data can be explored and visualized with

multiple interactive tools including volca-

no plots, distribution plots, heat maps, etc.

SimpliFi's™ on-the-fly response yields a machine-human interface where human intuition guides

data exploration guided. Users of all skill levels can take deep dives into the data and share projects
via a simple URL.
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Fig.6

DATA-TO-MEANING VIA REACTOME INTEGRATION

Tumors (without outliers) - SimpliFi

Understanding a dataset requires understand-
Ing of regulation within the biological systems.
SimpliFi™ provides tools to map data to path-
ways and analyze cellular compartments and
biological functions, as well as using the Reac-
tome pathway database to quickly understand
biological effects.

Fig. 7 Pathway and cellular compartment maps in conjunction with
GO annotation allow for deep exploration of proteomic, metabolomic,
lipidomic, transcriptomic, and genomic datasets.
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